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Populations represented by collections of points scattered randomly on the real line are ubiquitous in science
and engineering. The statistical modeling of such populations leads naturally to Poissonian populations—
Poisson processes on the real line with a distinguished maximal point. Poissonian populations are infinite
objects underlying key issues in statistical physics, probability theory, and random fractals. Due to their
infiniteness, measuring the diversity of Poissonian populations depends on the lower-bound cut-off applied.
This research characterizes the classes of Poissonian populations whose diversities are invariant with respect to
the cut-off level applied and establishes an elemental connection between these classes and extreme-value
theory. The measures of diversity considered are variance and dispersion, Simpson’s index and inverse par-
ticipation ratio, Shannon’s entropy and Rényi’s entropy, and Gini’s index.
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I. INTRODUCTION

Populations represented by collections of points scattered
randomly on the real line �or on a part of it� are prevalent
across all fields of science. Examples of such random popu-
lations include: earthquakes taking place in a given geologi-
cal region measured by their magnitudes—each point repre-
senting the magnitude of an earthquake; stars in a given
sector of space measured by their masses—each point repre-
senting the mass of a star; citizens of a given state measured
by their wealth—each point representing the wealth of a citi-
zen; insurance claims in a given insurance portfolio mea-
sured by their costs—each point representing the cost of a
claim; species in a given ecosystem measured by their
fitness—each point representing the fitness of a species.

There are two main statistical methods to quantitatively
model random populations: probabilistic and Poissonian. The
probabilistic method is based on the notion of probability
laws. A single member of a given population is sampled at
random; the value of the sampled member is a random vari-
able, and the probability law of this random variable repre-
sents the population’s random scattering. The probabilistic
model of the population is a sequence of independent and
identically distributed �iid� random variables governed by
population’s probability law. The Poissonian method regards
the random population as is—a collection of points scattered
randomly on the real line—and models it as a Poisson pro-
cess on the real line �1�.

Probability laws are governed by their associated density
functions—which are non-negative valued and normalized.
Poisson processes, on the other hand, are governed by their
associated intensity functions—which are non-negative val-
ued but need not �necessarily� be normalized. Poisson pro-
cesses with integrable intensities are essentially equivalent to
probability laws. However, Poisson processes with noninte-
grable intensities yield infinite random populations which

cannot be modeled via the probabilistic method.
Poisson processes with nonintegrable intensities are of

prime importance. These processes underlie: �a� the class of
Lévy-stable probability laws—the only possible stochastic
scaling limits of sums of iid random variables with infinite
variance �2–4�; �b� the classes of extreme-value probability
laws—Gumbel, Fréchet, and Weibull—the only possible sto-
chastic scaling limits of maxima of iid random variables
�5–7�; �c� nonlinear shot-noise systems �8,9�; �d� the defini-
tion and the exploration of fractality in the context of random
populations �10,11�; �e� the definition and the exploration of
the resilience of random populations to the action of random
perturbations �12�; �f� mechanisms which universally gener-
ate fractal stochastic processes �13,14�. �This list of applica-
tions of Poisson processes with nonintegrable intensities is
far from being exhaustive.�

Poisson processes with nonintegrable intensities arise
naturally when considering random populations with a dis-
tinguished maximum—as is the case in all the aforemen-
tioned examples of random populations �earthquakes magni-
tudes, star masses, citizens wealth, insurance-claims costs,
and species fitness�. Indeed, the probability law of the maxi-
mal point of a given Poisson process is nondegenerate if and
only if the intensity of the Poisson process is nonintegrable.
Henceforth, we refer to Poisson processes with nondegener-
ate maxima as “Poissonian populations.” A Poissonian popu-
lation has the following topological structure: the population
points can be ordered decreasingly—highest point, second-
highest point, third-highest point, etc.; there are finitely many
population points residing above any given level l �l�R,
where R is the range of the population points�, and infinitely
many points residing below the level.

Science has developed a whole “toolbox” for quantifying
the diversity of random populations represented by probabil-
ity laws. Well-established measures of diversity include: �a�
variance and dispersion—measuring the fluctuations of a
population around its mean; �b� Simpson’s index �15� and
inverse participation ratio �16�—the former applied in Biol-
ogy and Ecology to measure population heterogeneity, and
the latter applied in Physics to measure population-
localization; �c� Shannon’s entropy �17� and Rényi’s entropy
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�27�—applied in Physics and Information Theory to measure
population-randomness; �d� Gini’s index �18�—applied in
Economics and Social Sciences to measure population-
evenness �“societal egalitarianism”�. How can these mea-
sures of diversity be applied to Poissonian populations? The
answer to this question stems from the topological structure
of Poissonian populations:

As noted above, a Poissonian population has finitely
many population points residing above any given level l�l
�R�. Moreover, the points above a given level l turn out to
be iid random variables governed by a common probability
law. That is, to each level l corresponds an associated prob-
ability law—whose diversity can be measured by any of the
aforementioned measures of diversity. Hence, applying a
measure of diversity D to a Poissonian population P yields a
level-dependent diversity function DP�l��l�R�−DP�l� being
the diversity of the subpopulation of points residing above
the level l. Our goal in this research is to: characterize and
explore Poissonian populations P whose diversities are in-
variant with respect to the “cut-off” level l. Namely, Poisso-
nian populations whose diversity functions are invariable:
DP�l��const �l�R�. For such populations the measurement
of diversity is independent of the cut-off level l applied—
rendering diversity, in their case, a global quantitative gauge.

Henceforth, we refer to the cut-off level l applied as our
“resolution level” �assuming values in the range R�, and
term Poissonian populations with invariable diversity func-
tions as “resolution invariant.” Clearly, resolution invariance
depends on the measure of diversity D considered. The
analysis presented in this research yields three classes of
resolution-invariant Poissonian populations, which are inti-
mately related to the extreme-value probability laws noted
above:

�1� The Gumbel class. Poissonian populations defined on
the entire real line and governed by exponential intensities—
which is resolution invariant with respect to the following
measures of diversity: variance and dispersion; Simpson’s
index and inverse participation ratio; Shannon’s entropy and
Rényi’s entropy. This class is termed “Gumbel” due to the
fact that it constitutes of all Poissonian populations whose
maximal point is governed by the Gumbel extreme-value
probability law.

�2� The Fréchet class. Poissonian populations whose
points are bounded from below and governed by power-law
intensities—which is resolution invariant with respect to Gi-
ni’s index. This class is termed “Fréchet” due to the fact that
it constitutes of all Poissonian populations whose maximal
point is governed by the Fréchet extreme-value probability
law.

�3� The Weibull class. Poissonian populations whose
points are bounded from above and governed by power-law
intensities—which is resolution invariant with respect to Gi-
ni’s index. This class is termed “Weibull” due to the fact that
it constitutes of all Poissonian populations whose maximal
point is governed by the Weibull extreme-value probability
law.

The reminder of the paper is organized as follows. In Sec.
II we concisely review: measures of diversity �Sec. II A�;
extreme-value probability laws �Sec. II B�; Poisson pro-
cesses �Sec. II C�. In Sec. III we present the analysis of

resolution-invariant Poissonian populations: methodology
and general results �Sec. III A�; the Gumbel class �Sec.
III B�; the Fréchet and Weibull classes �Sec. III C�. In Sec.
IV we introduce and analyze the notion of “global diversity”
of Poissonian populations. The proofs of the main results are
given in the Appendix.

II. PRELIMINARIES

In this section we concisely review the following prelimi-
naries: measures of diversity �Sec. II A�, extreme-value prob-
ability laws �Sec. II B�, and Poisson processes �Sec. II C�.

A. Measures of diversity

Different fields of Science use different gauges to quantify
the diversity of random populations governed by arbitrary
probability laws. Henceforth, consider a random population
whose probability law is represented by the density function
f�x� �x real�. We focus—to start with—on the following four
“elemental” measures of diversity: variance, Simpson’s in-
dex, Shannon’s entropy, and Gini’s index.

Variance:

V�f� = �
−�

�

x2f�x�dx − ��
−�

�

xf�x�dx�2

. �1�

The variance is the most basic measure of diversity and is
applied across all fields of science. It is a positive-valued
quantitative measure for the fluctuations of the population
considered: the greater the variance—the more dispersed is
the population around its mean ��f�=	−�

� xf�x�dx. The root
of the variance is the population’s standard deviation ���.

Simpson’s index �15�:

S�f� =
1

�
−�

�

f�x�2dx

. �2�

Simpson’s index S�f� is applied in biology and ecology. It is
a positive-valued quantitative measure for the heterogeneity
of the population considered: the greater Simpson’s index—
the more heterogeneous and less uniform the population. For
example, in the case of the Gaussian probability law Simp-
son’s index is proportional to the population’s standard de-
viation �.

Remark 1. To attain intuition regarding the rational under-
lying Simpson’s index, consider a random population gov-
erned by a discrete probability law 
pk�k �pk being the occur-
rence probability of outcome k�. In the discrete setting the
reciprocal of Simpson’s index is given by S−1=�kpk

2.
Namely, S−1 is the probability that two independent samples
from the population will yield the same outcome. Hence, if
there is only one possible outcome then S−1=1 and S=1. On
the other hand, if there are n outcomes—all occurring with
equal probability pk=1 /n—then S−1=1 /n and S=n. In gen-
eral, if there are n possible outcomes then Simpson’s index S
assumes values in the range 1�S�n where: the lower
bound S=1 corresponds to the deterministic scenario �where
one single outcome has probability 1� and the upper bound
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S=n corresponds to the uniform scenario �where all out-
comes occur with equal probability 1 /n�. In physics the
quantities S and S−1 are referred to, respectively, as the “par-
ticipation ratio” and the “inverse participation ratio” �16�.
These ratios are commonly applied �in physics� as measures
of localization, and we shall elaborate on them in Sec. III B
below.

Shannon’s entropy �17�:

H�f� = − �
−�

�

ln�f�x��f�x�dx . �3�

Shannon’s entropy H�f� is applied in statistical physics and
information theory �19�. It is a real-valued quantitative mea-
sure for the randomness of the population considered: the
greater Shannon’s entropy—the more random and haphazard
the population. For example, in the case of the Gaussian
probability law Shannon’s entropy is proportional to the
logarithm ln��� of the population’s standard deviation �.

Gini’s index �18�:

G�f� = 1 −

�
0

�

F�x�2dx

�
0

�

F�x�dx

, �4�

where the function F�x�=	x
�f�x��dx��x�0� is the tail prob-

ability corresponding to the density function f�x� �see remark
2 below�. Gini’s index G�f� is applied in economics and
social sciences. It is a quantitative measure—taking values in
the unit interval �0,1�—for the evenness of the population
considered: the greater Gini’s index—the more unequal and
less egalitarian the population. In recent years the application
of Gini’s index has extended beyond economics and social
sciences—where it is commonly applied as a measure of
societal egalitarianism—and has attained popularity in other
scientific fields as a general quantitative gauge of evenness.
Examples include: astrophysics—the analysis of galaxy mor-
phology �20�; medical chemistry—the analysis of kinase in-
hibitors �21�; ecology—the effect of biodiversity on ecosys-
tem functioning �22�.

Remark 2. Gini’s index is defined only for random popu-
lations with non-negative values—i.e., density functions f�x�
supported on the non-negative half line �x�0�. The defini-
tion of Gini’s index can be extended to random populations
with values bounded from either below or above—by con-
sidering the distance of the population members from the
population’s bound �rather than their sheer values�. Hence,
for a population bounded from below by the bound
b—represented by the density function f�x��x�b�—we set
F�x�=	b+x

� f�x��dx��x�0� in Eq. �4�. And, for a population
bounded from above by the bound b—represented by the
density function f�x��x�b�—we set F�x�=	−�

b−xf�x��dx��x
�0� in Eq. �4�.

B. Extreme-value probability laws

Extreme-value theory studies the stochastic scaling limits
of sequences of iid random variables �5–7�. Extreme-value

theory is of major importance in the modeling and analysis
of rare and catastrophic events such as floods in hydrology,
large claims in insurance, crashes in finance, and material
failure in corrosion analysis �23,24�.

Given a sequence 
Xn�n=1
� of iid random variables, con-

sider the following affine scaling of the sequence’s maxima:

Mn =
max
X1, . . . ,Xn� − bn

an
�5�

�n=1,2 , . . .�, where 
an�n=1
� and 
bn�n=1

� are arbitrary scaling
coefficients. Extreme-value theory seeks nontrivial stochastic
limits M =limn→� Mn �the limit being in law� of the scaled
maxima. The “central limit theorem” of extreme-value
theory asserts that there are three possible classes of non-
trivial stochastic limits—referred to as the extreme-value
probability laws �7�:

�i� Gumbel—admitting values on the entire real line, and
governed by the cumulative distribution function

Prob�M � x� = exp�− c exp�− �x�� �6�

�x real; the coefficient c and the exponent � are positive
parameters�.

�ii� Fréchet—its values bounded from below, and gov-
erned by the cumulative distribution function

Prob�M � x� = exp�− c�x − b�−�� �7�

�x�b, where b is the lower bound; the coefficient c and the
exponent � are positive parameters�.

�iii� Weibull—its values bounded from above, and gov-
erned by the cumulative distribution function

Prob�M � x� = exp�− c�b − x��� �8�

�x�b, where b is the upper bound; the coefficient c and the
exponent � are positive parameters�.

C. Poisson processes

This paper studies the diversity of populations represented
by collections of points scattered randomly on the real line
�or on a part of it�. The common statistical method for the
random scattering of points in general domains is that of
Poisson processes �1�. Poisson processes have a wide spec-
trum of applications ranging from insurance and finance �23�
to queueing systems �25�.

Henceforth, we consider a real range R= �r� ,r�� of val-
ues, where r��r��−�� is the range’s lower bound and r��r�

��� is the range’s upper bound. Informally, a Poisson pro-
cess P defined on the range R, with intensity ��x��x�R�, is
a random collection of points scattered randomly as follows:
the infinitesimal interval �x ,x+dx� contains a single point
with probability ��x�dx and is empty with probability 1
−��x�dx �independently of all other infinitesimal intervals�.
More precisely, the points of the Poisson process P are scat-
tered as follows �1�: �i� the number of points residing in an
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interval I�R is a Poisson-distributed random variable with
mean 	I��x�dx;1 �ii� the number of points residing in disjoint
intervals are independent random variables.

The maximal point of the Poisson process P—henceforth
denoted MP—is governed by the cumulative distribution
function

Prob�MP � x� = exp�− 	�x�� �9�

�x�R�, where 	�x�=	x
r�

��x��dx� is the tail intensity of the
Poisson process P.2 For the cumulative distribution function
of Eq. �9� to be nondegenerate—i.e., to be monotone increas-
ing from the level 0 �in the limit x→r�� to the level 1 �in the
limit x→r��—it is required that the intensity ��x� be nonin-
tegrable at the lower bound r� and integrable at the upper
bound r�. This, in turn, implies that: �i� the function 	�x� is
monotone decreasing from the level �=limx→r�

	�x� to the
level 0=limx→r� 	�x�; �ii� the random population P is
infinite—consisting of infinitely many points. As stated in
the introduction, we term Poisson processes with nondegen-
erate maxima Poissonian populations.

Comparing the cumulative distribution function of Eq. �9�
to the cumulative distribution functions of Eqs. �6�–�8� leads
to an intimate and profound relation between extreme-value
theory and Poissonian populations. Indeed, the extreme-
value stochastic limits M turn out to be equal �in law� to the
maximal points MP of special Poissonian populations:

�i� Gumbel—the probability law of the maximal point of
Poissonian populations, defined on the entire real line, with
tail intensity

	�x� = c exp�− �x� �10�

�x real; the coefficient c and the exponent � are positive
parameters�.

�ii� Fréchet—the probability law of the maximal point of
Poissonian populations, defined on the half-line �b ,��, with
tail intensity

	�x� = c�x − b�−� �11�

�x
b; the coefficient c and the exponent � are positive pa-
rameters�.

�iii� Weibull—the probability law of the maximal point of
Poissonian populations, defined on the half-line �−� ,b�, with
tail intensity

	�x� = c�b − x�� �12�

�x�b; the coefficient c and the exponent � are positive pa-
rameters�.

III. DIVERSITY OF POISSONIAN POPULATIONS

In this section we present the analysis of Poissonian popu-
lations with resolution-invariant diversity functions: method-
ology and general results �Sec. III A�, the Gumbel class �Sec.
III B�, and the Fréchet and Weibull classes �Sec. III C�.

A. Methodology and general results

Consider a Poissonian population P defined on the range
R and governed by the intensity ��x��x�R�. Given a level
l�l�R�, the Poissonian population P consists of finitely
many points residing above the level l and of infinitely many
points residing below the level l. The “existence theorem” of
the theory of Poisson processes ��1�, Sec. 2.5� implies that
the points of the Poissonian population P which reside above
the level l are iid random variables—their probability law
governed by the common density function

f l�x� =  0 �r� � x � l�
��x�
	�l�

�l � x � r�� .� �13�

Thus, to each level l�l�R� corresponds a density func-
tion f l�x�—given by Eq. �13�—which represents the prob-
ability law of the sub-population of points residing above
this level. Applying a measure of diversity D to the density
function f l�x� yields, in turn, the diversity D�f l� of the sub-
population of points residing above the level l. Hence, when
trying to quantify the diversity of a Poissonian population P,
we obtain a diversity function DP�l�ªD�f l� which is depen-
dent on the resolution level l applied �l�R�. We refer to the
cut-off level l applied as our “resolution level” and focus in
this research on Poissonian populations whose diversities are
resolution invariant:

Definition 3. A Poissonian population P, defined on the
range R, is resolution-invariant with respect to the measure
of diversity D if its diversity function DP�l� is invariable
with respect to the resolution level l applied: DP�l��const
�l�R�.

A statistical analysis yields the following characteriza-
tions of resolution-invariant Poissonian populations:

Proposition 4. The Gumbel class. A Poissonian population
P, defined on the real line, is resolution invariant with re-
spect to the following measures of diversity—variance, Sim-
pson’s index, and Shannon’s entropy—if and only if it is
governed by the “Gumbel tail intensity” of Eq. �10�.

Proposition 5. The Fréchet class. A Poissonian population
P, defined on the half-line �b ,��, is resolution invariant with
respect to Gini’s index if and only if it is governed by the
“Fréchet tail intensity’ of Eq. �11�.

Proposition 6. The Weibull class. A Poissonian population
P, defined on the half-line �−� ,b�, is resolution invariant
with respect to Gini’s index if and only if it is governed by
the “Weibull tail intensity” of Eq. �12�.

The proofs of propositions 4–6 are given in the Appendix,
Secs. 1–3. In what follows, we further explore the Gumbel,
Fréchet, and Weibull classes of Poissonian populations.

1Namely, the probability that the interval I will contain exactly k
points is given by 1

k! ��I�kexp�−�I��k=0,1 ,2 , . . .�, where �I

=	I��x�dx.
2The derivation of Eq. �9� is as follows. The maximal point MP

satisfies 
MP�x� if and only if the random population P has no
points exceeding the level x—i.e., has zero points residing in the
interval I= �x ,r��. However, the number of points residing in the

interval I is Poisson-distributed with mean 	�x�=	x
r�

��x��dx�—
implying that the probability that the interval I contains zero points
is exp�−	�x��.
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B. Gumbel class

Poissonian populations, governed by the Gumbel tail in-
tensity of Eq. �10�, were shown to be resolution invariant
with respect to the following measures of diversity: variance,
Simpson’s index, and Shannon’s entropy. These measures of
diversity, in turn, are special cases of the following—more
general—measures of diversity:

Dispersion:

D��f� = �
−�

�

�x − ��f���f�x�dx , �14�

where ��f�=	−�
� xf�x�dx is the mean of density function f�x�

and where � is a positive exponent. The dispersion measures
the fluctuation around the mean using the L� metric. The
variance V�f� is a special case of the dispersion, correspond-
ing to the L2 metric: V�f�=D2�f�.

Inverse participation ratio �16�:

P��f� = �
−�

�

f�x��dx , �15�

where � is a positive exponent. The inverse participation
ratio P��f� is the distance—measured in the L� metric—of
the density function f�x� from the zero function. The inverse
participation ratio P��f� and the participation ratio 1 / P��f�
are commonly used in physics as a quantitative measure of
localization of wave functions in the disordered media �26�.
Simpson’s index S�f� is a special case of the participation
ratio, corresponding to the L2 metric: S�f�=1 / P2�f�.

Rényi’s entropy �27�:

R��f� =
− 1

� − 1
ln��

−�

�

f�x��dx� , �16�

where ��1 is a positive exponent. Rényi’s entropy R��f� is
proportional to the logarithm of the inverse participation ra-
tio P��f�. Shannon’s entropy H�f� is a special case of the
Rényi’s entropy, corresponding to the L1 metric: H�f�
=lim�→1 R��f�.

Statistical analysis asserts that proposition 4 can be ex-
tended to include also diversities with respect to dispersion
D��f�, inverse participation ratio P��f�, and Rényi’s entropy
R��f�:

Proposition 7. The Gumbel class. A Poissonian population
P, defined on the real line, is resolution-invariant with re-
spect to the following measures of diversity—dispersion, in-
verse participation ratio, and Rényi’s entropy—if and only if
it is governed by the Gumbel tail intensity of Eq. �10�.

The proof of proposition 7 is given in the Appendix, Sec.
1. The resolution invariance of Poissonian populations, gov-
erned by the Gumbel tail intensity of Eq. �10�, can be ap-
proached also from a different perspective which we now
describe. Substituting the resolution-dependent density func-
tion of Eq. �13� into Eqs. �14�–�16� yields, respectively:

Dispersion:

D��f l� = �
0

� �x − �
0

�

x����l + x��
	�l�

�dx������l + x�
	�l�

�dx .

�17�

Inverse participation ratio:

P��f l� = �
0

� ���l + x�
	�l�

��

dx . �18�

Rényi’s entropy:

R��f� = 
− 1

� − 1
ln��

0

� ���l + x�
	�l�

��

dx� � � 1

�
0

�

ln���l + x�
	�l�

� · ���l + x�
	�l�

�dx � = 1.�
�19�

Note that the resolution-dependent measures of diversity ap-
pearing in Eqs. �17�–�19� are all functionals of the density
function

l�x� =
��l + x�

	�l�
�20�

�x�0�. This observation leads to the following result:
Proposition 8. The density function l�x� of Eq. �20� is

independent of the resolution level l �l real� if and only if the
tail intensity 	�x� �x real� admits the Gumbel form of Eq.
�10�—in which case l�x�=�x�, where

�x� = � exp�− �x� �x � 0� . �21�

The proof of proposition 8 is given in the Appendix, Sec.
1. Note that the density function �x� appearing in Eq. �21� is
that of the Exponential probability law with mean 1

� . The
meaning of proposition 8 is the following:

Let Xl�Xl� l� denote the random value of an arbitrary
point of the Poissonian population P residing above the res-
olution level l �l real�. The density function of Eq. �20�, in
effect, governs the probability law of the scaled random vari-

able X̂l=Xl− l�X̂l�0�. Proposition 8 asserts that the probabil-

ity law of the scaled random variable X̂l is independent of the
resolution level l if and only if the tail intensity 	�x� �x real�
admits the Gumbel form of Eq. �10�—in which case the

scaled random variables 
X̂l�−��l�� are all governed by a
common Exponential probability law with mean 1

� .

C. Fréchet and Weibull classes

Approaches analogous to the one leading to proposition 8
can be followed also in the cases of the Fréchet and Weibull
classes of Poissonian populations.

1. Fréchet class

Consider a Poissonian population P defined on the half-
line �b ,��. Equation �A24� of the Appendix implies that the
population’s resolution-dependent Gini index is given by
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G�f l� = 1 −

1 + �
1

� �	�b + �l − b�x�
	�l� �2

dx

1 + �
1

� �	�b + �l − b�x�
	�l� �dx

�22�

�l
b�. Noting that the resolution-dependent Gini index of
Eq. �22� is a functional of the tail probability

�l�x� =
	�b + �l − b�x�

	�l�
�23�

�x�1� leads to the following result:
Proposition 9. The tail probability �l�x� of Eq. �23� is

independent of the resolution level l�l
b� if and only if the
tail intensity 	�x��x
b� admits the ‘Fréchet form’ of Eq.
�11�—in which case �l�x�=��x�, where

��x� = x−� �x � 1� . �24�

The proof of proposition 9 is given in the Appendix, Sec.
2. Note that the tail probability ��x� appearing in Eq. �24� is
that of the Pareto probability law with exponent �. The
meaning of proposition 9 is the following:

Let Xl�Xl� l� denote the random value of an arbitrary
point of the Poissonian population P residing above the res-
olution level l �l
b�. The tail probability of Eq. �23�, in
effect, governs the probability law of the scaled random vari-

able X̂l= �Xl−b� / �l−b��X̂l�1�. Proposition 9 asserts that the

probability law of the scaled random variable X̂l is indepen-
dent of the resolution level l if and only if the tail intensity
	�x��x
b� admits the Fréchet form of Eq. �11�—in which

case the scaled random variables 
X̂l�l
b are all governed by
a common Pareto probability law with exponent �.

2. Weibull class

Consider a Poissonian population P defined on the half-
line �−� ,b�. Equation �A38� of the Appendix implies that the
population’s resolution-dependent Gini index is given by

G�f l� = 1 −

�
0

1 �	�b − �b − l�x�
	�l�

�2

dx

�
0

1 �	�b − �b − l�x�
	�l�

�dx

�25�

�l�b�. Noting that the resolution-dependent Gini index of
Eq. �25� is a functional of the cumulative distribution func-
tion

�l�x� =
	�b − �b − l�x�

	�l�
�26�

�0�x�1� leads to the following result:
Proposition 10. The cumulative distribution function

�l�x� of Eq. �26� is independent of the resolution level l �l
�b� if and only if the tail intensity 	�x��x�b� admits the
‘Weibull form’ of Eq. �12�—in which case �l�x�=��x�,
where

��x� = x� �0 � x � 1� . �27�

The proof of proposition 10 is given in Appendix, Sec. 3.
Note that the cumulative distribution ��x� appearing in Eq.
�27� is that of the inverse Pareto probability law with expo-
nent �. The meaning of proposition 10 is the following:

Let Xl�l�Xl�b� denote the random value of an arbitrary
point of the Poissonian population P residing above the res-
olution level l�l�b�. The cumulative distribution function of
Eq. �26�, in effect, governs the probability law of the scaled

random variable X̂l= �b−Xl� / �b− l��0� X̂l�1�. Proposition
10 asserts that the probability law of the scaled random vari-

able X̂l is independent of the resolution level l if and only if
the tail intensity 	�x��x�b� admits the Weibull form of Eq.

�12�—in which case the scaled random variables 
X̂l�l�b are
all governed by a common inverse Pareto probability law
with exponent �.

IV. GLOBAL DIVERSITY

So far we followed a resolution-invariance approach to
explore the diversity of Poissonian populations—focusing on
Poissonian populations whose diversity functions DP�l� are
invariable with respect to the resolution level l�l�R�. In this
section we follow an alternative approach based on the no-
tion of global diversity:

Definition 11. A Poissonian population P, defined on the
range R, has a global diversity DP—with respect to the mea-
sure of diversity D—if the limit DPª liml→r�

DP�l� exists.
The statistical analysis of global diversity involves the

notion of regular variation �28�. A real function ��x� is said
to be regularly varying at the limit point x→p if the limit
limx→p ��cx� /��x� exists for all positive constants c. Theory
shows that if the function ��x� is regularly varying at the
limit point x→p then limx→p ��cx� /��x�=c�, where the ex-
ponent � is a real parameter called the “exponent of regular
variation.” Regularly varying functions are generalizations of
power-law functions and play a key role in many fields of
probability theory �see Chap. 8 in �28��. With the notion of
regular variation at hand, we are in position to present the
global diversity counterparts of the Gumbel, Fréchet, and
Weibull classes explored so forth.

The Gumbel counterpart. Equations �17�–�19� imply that
a Poissonian population P, defined on the entire real line, has
a global diversity with respect to the following measures of
diversity—variance and dispersion, Simpson’s index and in-
verse participation ratio, Shannon’s entropy and Rényi’s
entropy—if and only if the limit

�x� = lim
l→−�

��x + l�
	�l�

�28�

exists for all x�0. The limit of Eq. �28� exists if and only if

the function �̃���=��ln������
0� is regularly varying at the
limit �→0—in which case the function �x��x�0� admits
the exponential form of Eq. �21�. This case is the asymptotic
counterpart of the Gumbel case of propositions 4 and 7.

The Fréchet counterpart. Equation �22� implies that a
Poissonian population P, defined on the half-line �b ,��, has
a global diversity with respect to Gini’s index if and only if
the limit
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��x� = lim
l→b

	�b + �l − b�x�
	�l�

�29�

exists for all x�1. The limit of Eq. �29� exists if and only if
the tail intensity 	�l��l
b� is regularly varying at the limit
l→b—in which case the function ��x��x�1� admits the
Pareto form of Eq. �24�. This case is the asymptotic counter-
part of the Fréchet case of proposition 5.

The Weibull counterpart. Equation �25� implies that a
Poissonian population P, defined on the half-line �−� ,b�,
has a global diversity with respect to Gini’s index if and only
if the limit

��x� = lim
l→−�

	�b − �b − l�x�
	�l�

�30�

exists for all 0�x�1. The limit of Eq. �30� exists if and
only if the tail intensity 	�l��l�b� is regularly varying at the
limit l→−�—in which case the function ��x��0�x�1� ad-
mits the Beta form of Eq. �27�. This case is the asymptotic
counterpart of the Weibull case of proposition 6.

V. CONCLUSIONS

This paper studied the diversity of Poissonian popula-
tions. Considering populations represented by collections of
points scattered randomly on the real line and modeling such
populations by Poisson processes with distinguished maxima
led us to Poissonian populations. The infiniteness of these
random populations renders them beyond the quantitative de-
scription of probability laws—thus making it impossible to
study their statistical diversity via measures of diversity of
probability laws.

However, exploiting the topological structure of Poisso-
nian populations gave rise to a resolution-dependent mea-
surement of their diversities. A Poissonian population P, de-
fined on the range R, has finitely many points above any
given level l�l�R� and: the subpopulation of points residing
above the resolution level l are iid random variables gov-
erned by a common resolution-dependent probability law
�with density function f l�x� given by Eq. �13��. Hence—with
respect to a given measure of diversity D—to each level l we
obtain the diversity D�f l� of the subpopulation of points re-
siding above the level l. The diversity of the entire Poisso-
nian population P is given, in turn, by the level-dependent
diversity function DP�l�=D�f l��l�R�.

The goal of this research was to characterize Poissonian
populations whose diversity functions are invariable with re-
spect to the level: DP�l��const �l�R�. For such popula-
tions the diversity is independent of the cut-off level l ap-
plied and is thus a global quantitative gauge. We termed the
cut-off level l our resolution level and referred to the afore-
mentioned Poissonian populations as resolution-invariant.
Statistical analysis led to the following three classes of
resolution-invariant Poissonian populations:

�1� The Gumbel class—Poissonian populations defined on
the entire real line, and governed by exponential
intensities—which is resolution-invariant with respect to the
following measures of diversity: variance and dispersion;

Simpson’s index and inverse participation ratio; Shannon’s
entropy and Rényi’s entropy.

�2� The Fréchet class—Poissonian populations whose
points are bounded from below and governed by power-law
intensities—which is resolution-invariant with respect to Gi-
ni’s index.

�3� The Weibull class—Poissonian populations whose
points are bounded from above and governed by power-law
intensities—which is resolution-invariant with respect to Gi-
ni’s index.

The Gumbel, Fréchet and Weibull classes are termed such
due to the fact that they constitute, respectively, all Poisso-
nian populations whose maximal points are governed by the
Gumbel, Fréchet, and Weibull extreme-value probability
laws. Thus, this paper presents an explicit characterization of
Poissonian populations with resolution-invariant diversities
and establishes an elemental connection between these Pois-
sonian populations and extreme-value theory.

APPENDIX

1. Gumbel class

a. Proposition 4: Variance

Substituting the resolution-dependent density function
f l�x� �given by Eq. �13�� into Eq. �1� yields the resolution-
dependent variance

V�f l� =
1

	�l���l

�

x2��x�dx� −
1

	�l�2��
l

�

x��x�dx�2

.

�A1�

Assuming that the variance V�f l� is resolution-independent—
i.e., V�f l��v �for all resolution levels l�—implies that

	�l���
l

�

x2��x�dx� − ��
l

�

x��x�dx�2

= v1	�l�2.

�A2�

Differentiating Eq. �A2� with respect to the resolution level l
leads—after some basic algebra—to

	��l� =
1

v
	�l� . �A3�

Since the function 	�l� �l real� is monotone decreasing, the
solution of the differential Eq. �A3� is of the form

	�l� = c exp�− �l� , �A4�

where the coefficient c and the exponent � are positive pa-
rameters.

b. Proposition 4: Simpson’s index

Substituting the resolution-dependent density function
f l�x� �given by Eq. �13�� into Eq. �2� yields the resolution-
dependent Simpson index
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S�f l� =
	�l�2

�
l

�

��x�2dx

. �A5�

Assuming that the Simpson index S�f l� is resolution
independent—i.e., S�f l��s �for all resolution levels
l�—implies that

�
l

�

��x�2dx =
1

s
	�l�2. �A6�

Differentiating Eq. �A6� with respect to the resolution level l
leads—after some basic algebra—to

	��l� = −
2

s
	�l� . �A7�

The solution of the differential Eq. �A7� is of the form

	�l� = c exp�− �l� , �A8�

where the coefficient c and the exponent � are positive pa-
rameters.

c. Proposition 4: Shannon’s entropy

Substituting the resolution-dependent density function
f l�x� �given by Eq. �13�� into Eq. �3� yields—after some
basic algebra—the resolution-dependent Shannon entropy

H�f l� =
1

	�l��l

�

��x�ln���x��dx − ln�	�l�� . �A9�

Assuming that the Shannon entropy H�f l� is resolution
independent—i.e., H�f l��h �for all resolution levels
l�—implies that

�
l

�

��x�ln���x��dx − 	�l�ln�	�l�� = h	�l� . �A10�

Differentiating Eq. �A10� with respect to the resolution level
l leads—after some basic algebra—to

	��l� = − exp�1 + h�	�l� . �A11�

The solution of the differential Eq. �A11� is of the form

	�l� = c exp�− �l� , �A12�

where the coefficient c and the exponent � are positive pa-
rameters.

d. Proposition 7: Inverse participation ratio and Rényi’s entropy
(�Å1)

Substituting the resolution-dependent density function
f l�x� �given by Eq. �13�� into Eq. �15� yields the resolution-
dependent inverse participation ratio

P��f l� = 	�l�−��
l

�

��x��dx . �A13�

Assuming that the inverse participation ratio P��f l� is
resolution-independent—i.e., P��f l�� p �for all resolution
levels l�—implies that

�
l

�

��x��dx = p	�l��. �A14�

Differentiating Eq. �A14� with respect to the resolution level
l leads—after some basic algebra—to

	��l� = − �p��1/��−1�	�l� . �A15�

The solution of the differential Eq. �A15� is of the form

	�l� = c exp�− �l� , �A16�

where the coefficient c and the exponent � are positive pa-
rameters.

Equation �16� implies that

R��f l� =
− 1

� − 1
ln�P��f l�� . �A17�

Hence, the Rényi entropy R��f l� is resolution independent if
and only if the inverse participation ratio P��f l� is resolution
independent—leading, once again, to Eq. �A16�.

e. Proposition 8

Assume that the density function l�x��x�0� of Eq. �20�
is independent of the resolution level l. This means that

	��l + x�
	�l�

= − �x� �A18�

holds for all l real and x�0, where �x� is a positive-valued
function of the variable x. In particular, Eq. �A18� implies
that

	��l� = − �	�l� �A19�

�l real�, where �=�0�. The solution of the differential Eq.
�A19� is

	�l� = c exp�− �l� �A20�

�l real�. Substituting the tail intensity of Eq. �A20� back into
Eq. �A18� further yields

�x� = � exp�− �x� �x � 0� . �A21�

2. Fréchet class

a. Proposition 5

The Poissonian population considered is defined on the
half-line �b ,��. Hence—due to remark 2—the tail probabil-
ity corresponding to the density function f l�x� �x
b� is
given by

Fl�x� = �
b+x

�

f l�x��dx� �A22�

�x�0�. Substituting the resolution-dependent density func-
tion f l�x� �given by Eq. �13�� into Eq. �A22� yields the
resolution-dependent tail probability
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Fl�x� =  1 �0 � x � l − b�
	�b + x�

	�l�
�l − b � x � �� .� �A23�

Substituting the resolution-dependent tail probability of Eq.
�A23� into Eq. �4� further yields the resolution-dependent
Gini index

G�f l� = 1 −

�l − b� + �
l−b

� �	�b + x�
	�l�

�2

dx

�l − b� + �
l−b

� �	�b + x�
	�l�

�dx

. �A24�

Setting �= l−b�l
b� and ����=	�b+����
0�, Eq. �A24�
becomes

G�f l� = 1 −

� + �
�

� ���x�
����

�2

dx

� + �
�

� ���x�
����

�dx

. �A25�

Assuming that the Gini index G�f l� is resolution
independent—i.e., G�f l��g �for all resolution levels
l
b�—implies that

�����2 + �
�

�

��x�2dx = �1 − g�������2 + �����
�

�

��x�dx�
�A26�

holds for all �
0. Differentiating Eq. �A26� with respect to
the variable � leads—after some basic algebra—to

2����� = �1 − g��2����� + �
�

�

��x�dx� . �A27�

Differentiating Eq. �A27� with respect to the variable �
leads—after some basic algebra—to

�����
����

= − �1 + g

2g
�1

�
. �A28�

The solution of the differential Eq. �A28� is of the form

���� = c�−� �A29�

��
0�, where the coefficient c and the exponent � are posi-
tive parameters. Equation �A29�, in turn, implies that

	�l� = c�l − b�−� �A30�

�l
b�.

b. Proposition 9

Assume that the tail probability �l�x� of Eq. �23� is inde-
pendent of the resolution level l�l
b�. This means that

	�b + �x�
	�b + ��

= ��x� �A31�

holds for all �
0 real and x�1, where ��x� is a positive-
valued function of the variable x. Equation �A31� can be
extended also to 0�x�1 via

��x� =

	�b +
�

x
x�

	�b +
�

x
� =

1

	�b + �
1

x
�

	�b + ��

=
1

��1

x
� �A32�

and Eq. �A31� implies that

��xy� =
	�b + �xy�
	�b + ��

=
	�b + ��y�x�
	�b + ��y��

	�b + ��y��
	�b + ��

= ��x���y�

�A33�

holds for all x ,y�1.
Equations �A32� and �A33� imply that the function ��x�

is a power law: ��x�=xp�x
0�. Since the tail intensity
	�l��l
b� is monotone decreasing, we conclude that

��x� = x−� �A34�

�x
0�, where � is a positive exponent. Substituting Eq.
�A34� back into Eq. �A31�—while setting �=1 and
x= l−b—yields

	�l� = c�l − b�−� �A35�

�l
b�, where c=	�b+1�.

3. Weibull class

a. Proposition 6

The Poissonian population considered is defined on the
half-line �−� ,b�. Hence—due to remark 2—the tail prob-
ability corresponding to the density function f l�x� �x�b� is
given by

Fl�x� = �
−�

b−x

f l�x��dx� �A36�

�x�0�. Substituting the resolution-dependent density func-
tion f l�x� �given by Eq. �13�� into Eq. �A36� yields the
resolution-dependent tail probability

Fl�x� = 1 −
	�b − x�

	�l�
�0 � x � b − l�

0 �b − l � x � �� .
� �A37�

Substituting the resolution-dependent tail probability of Eq.
�A37� into Eq. �4� further yields the resolution-dependent
Gini index

G�f l� = 1 −

�
0

b−l �1 −
	�b − x�

	�l�
�2

dx

�
0

b−l �1 −
	�b − x�

	�l�
�dx

. �A38�

Setting �=b− l�l�b� and ����=	�b−�����0�, Eq. �A38�
becomes
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G�f l� = 1 −

�
0

� ���x�
����

�2

dx

�
0

� ���x�
����

�dx

. �A39�

Assuming that the Gini index G�f l� is resolution-
independent—i.e., G�f l��g �for all resolution levels
l�b�—implies that

�����2 − 2�����
0

�

��x�dx + �
0

�

��x�2dx = �1 − g�������2

− �����
0

�

��x�dx� �A40�

holds for all ��0. Differentiating Eq. �A40� with respect to
the variable � leads—after some basic algebra—to

2����� − 2�
0

�

��x�dx = �1 − g��2����� − �
0

�

��x�dx� .

�A41�

Differentiating Eq. �A41� with respect to the variable �
leads—after some basic algebra—to

�����
����

= �1 − g

2g
�1

�
. �A42�

The solution of the differential Eq. �A42� is of the form

���� = c�� �A43�

���0�, where the coefficient c and the exponent � are posi-
tive parameters. Equation �A43�, in turn, implies that

	�l� = c�b − l�� �A44�

�l�b�.

b. Proposition 10

Assume that the cumulative distribution function �l�x� of
Eq. �26� is independent of the resolution level l �l�b�. This
means that

	�b − �x�
	�b − ��

= ��x� �A45�

holds for all �
0 real and 0�x�1, where ��x� is a
positive-valued function of the variable x. Equation �A45�
can be extended also to x�1 via

��x� =

	�b −
�

x
x�

	�b −
�

x
� =

1

	�b − �
1

x
�

	�b − ��

=
1

��1

x
� . �A46�

And, Eq. �A45� implies that

��xy� =
	�b − �xy�
	�b − ��

=
	�b − ��y�x�

	b − ��y�
	�b − ��y��

	�b − ��
= ��x���y�

�A47�

holds for all 0�x ,y�1.
Equations �A46� and �A47� imply that the function ��x�

is a power law: ��x�=xp�x
0�. Since the tail intensity
	�l��l�b� is monotone decreasing, we conclude that

��x� = x� �A48�

�x
0�, where � is a positive exponent. Substituting Eq.
�A48� back into Eq. �A45�—while setting �=1 and
x=b− l—yields

	�l� = c�b − l�� �A49�

�l�b�, where c=	�b−1�.
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